Southampton

Self-assembly of lithium batteries with 3D architecture

Matthew Lacey, Matthew Roberts, Phil Johns, Gaber El-Enany and John Owen

Email: matthew.lacey@soton.ac.uk

http://www.soton.ac.uk/~ssegroup

Microbatteries

Broadly speaking 1-10 mm²

Intended applications include....

- Ink jet printer cartridges
- Micro accelerometers
- Micro transmitters
- Implantable medical devices
- etc ...

Pulse power, short periods of high power usage between longer periods of 'idle' operation, is a requirement of many of these devices

The microbattery electrode design is based on the 6.8 mm x 1.3 mm coin cell

Planar thin film \rightarrow 3D

Fabrication of 3D-MBs

Successive depositions of active materials (current collector, electrode, electrolyte, 2nd electrode, current collector) on 3D substrate

	100 ppi	100 ppi compressed to 20 %	
	Act V Spot Magn Def WD Esp 200 pm	Acc.Y. Spot Magn. Def. WD. Esp. 200 pm	
Thickness of foam/	Surface Area Gain		
mm			
0.8	4	28	
2	10	70	
5	25	180	
10	50	350	

Scope

- Cathodes
 - Electrodeposition of MnO₂
 - Spin-coating of LiFePO₄
- Polymer electrolytes
 - Electrodeposition
 - Solvent evaporation
- Completing the cell

Electrodeposition of MnO₂

0.3 MnSO₄ in 0.3 H₂SO₄ at 5 mA cm⁻² at 95 °C, followed by annealing at 400 °C for 10 hr

Ti or RVC substrate

Conformal deposition of MnO₂

Half cells assembled: Li | 1 M LiPF₆ in 1:1 EC/DMC | MnO₂/RVC

Area gain effect and rate testing

Spincoating LiFePO₄

Bare

5 %

10 %

75% LiFePO₄, 20% CB, 5% PVDF-HFP Varying wt% solids in CP

9

Electrochemical performance

Multiple coatings of LiFePO₄

Bare

1 Spin

-sse-

2 Spins

3 Spins

4 Spins

Comparison
with a
conventional
LiFePO₄
electrode

	Slow rate capacity/ µA h cm ⁻²	Rate for 50% DoD
Convential 60 µm Composite Pellet	1.3	~9C
3D RVC LFP electrode 3 coats	1.1	~25 C 12

15% v/v PEGDA (M_n ~700) in PC, 0.5 M LiTFSI supporting electrolyte Deposited on Cu₂Sb on Au/Cr EQCM substrate at 100 mV s⁻¹ between -0.5 V and -3.0 V vs Ag wire over 25 cycles

NiSn | polymer | Li

Planar half cell

Deposition solution: 0.5 M LiTFSI in: 15% v/v PEGDA (containing 10% w/w nano-SiO₂), 4% v/v PEGMEA in PC

"Charge transfer resistance" – probably due to SEI on NiSn surface -SSe-

Deposition onto RVC

Combined Ag wire reference & Pt mesh counter electrode (2 mm diameter)

Syringe needle to Ar gas supply

~ 1 mL deposition solution

RVC substrate fixed by epoxy resin

Ti foil contact to substrate

SEM

-sse-