

Choosing the cathode binder:

How much difference can it make?

Matthew J. Lacey

Fabian Jeschull, Kristina Edström and Daniel Brandell

Department of Chemistry – Ångström Laboratory, Uppsala University

matthew.lacey@kemi.uu.se

http://www.iws.fraunhofer.de/malisu

The target:

Optimisation of carbon structure for energy density and stability

Polymer materials/electrolyte additives for redox shuttle/self-discharge suppression

Anode stabilisation, cell balancing

Prototype cell of 400 Wh/kg (3 mg (S) cm⁻², 60% S in cathode, 1 Ah g⁻¹ (S))

Why binder? Why would it matter?

Slurry casting: convenient existing process using active material, binder and other additives for making stable composite electrodes

But, compared to Li-ion, we think the binder in a Li-S electrode can be significant in the following ways:

Pore blocking: i.e., inaccessibility of surface area/pore volume → reduced capacity, rate capability

Functionality: beneficial interactions with intermediates (or even end products?)

Experimental overview

 $R = H \text{ or } CH_2CO_2H$

Binders:

PVdF (Aldrich)

PVdF-HFP (Kynar FLEX 2801)

PEO

(Aldrich, M_w~4M)

(Leclanché, Targray)

PVP (Aldrich, M_w ~360k)

'n

:SBR

Two types of cell:

2025 coin cell

"Coffee-bag" pouch cell

Electrolyte:

1 M LITFSI, 0.25 M LINO₃, DME:DOL 1:1

Simple recipe for high capacity: surface area, pore volume

Surface area for kinetics, delayed passivation

Pore volume space for discharge products

...and some sort of strategy to minimise capacity loss

Optimised host structures are well-investigated

UPPSALA UNIVERSITET

Pore filling in carbon black

	S.A. m²/g	pore vol cm ³ g ⁻¹	μpore S.A.	µpore vol
СВ	1100	1.76	376	0.16
C:PVdF	175	0.53	0	0.00
C:(-HFP)	119	0.55	0	0.00
C:PEO	17	0.11	0	0.00

Pores of all sizes filled between 1.7 and 100 nm; significant reduction of surface area and pore volume.

N.B. pore volume measured up to ~75 nm pore width

"Swellability series"

PEO > PVdF-HFP > PVdF-HFP

Exaggerated cathode composition: 60% S, 25% C, 15% binder

6 μL/mg (S) electrolyte, C/20 rate

Unusual increase in capacity in first few cycles because of swelling

No observable trend in capacity with quality of coating

Even more pronounced effect with pre-infiltration of sulfur

Pre-infiltration of S by mixing with C and heating to 155 °C Binder fills remaining pores

Electrochemistry even worse, except if binder is not included at all!

~1100 mAh g⁻¹ with 70.6% S in cathode – extremely high!

Lacey et al, J. Phys. Chem. C, in press

PVdF* is not a good binder for Li-S

* Disclaimer: only guaranteed for homopolymer PVdF in DME:DOL electrolytes with high S-loading into highly porous carbon hosts prepared from slurries in NMP!

CMC:SBR and PEO

CMC:SBR is a decent alternative to PVdF

Stable binder system with reduced degree of microporosity blocking from water-based slurries

PEO shows better performance

Higher capacity, reduced hysteresis, lower impedance at charge/discharge limits

Note! Older results with different cathode composition and cell construction. Capacities and capacity fade cannot be compared directly between coin cell and coffee-bag cells

Background: PEO as a polysulfide trap?

Functionalised mesoporous carbon surface with PEG-250

"We believe that the effect of the PEG-functionalized surface is twofold. First, it serves to **trap the polysulphide species** by providing a highly hydrophilic surface chemical gradient that preferentially solubilizes them in relation to the electrolyte. Second, by limiting the concentration of the polysulphide anions in the electrolyte, the **redox shuttle mechanism is curtailed to a large degree**. Spin-coated PEG-20000 "barrier"

Alternative interpretation?

Ji et al: "the kinetics of the last reaction step has a role in capacity limitation...There is progressively more limited accessibility of Li⁺ ions and electrolyte to the sulphur mass towards the end of discharge because the pores become filled with insoluble Li_xS (x = 1-2)"

Fig. 6. First cycle profile and capacity fading of a sulfur electrode in ether-based electrolytes (1 mol L⁻¹ LiTFSI), with a varying glyme chain length. All solvents were mixed with DIOX in a 50/50 volume ratio. The capacities are given in mAh g⁻¹ of sulfur material.

C. Barchasz, J.-C. Leprêtre, S. Patoux, F. Alloin, Electrochim. Acta 89 (2013) 737.

Barchasz et al: "PEGDME solvents proved to be key components for Li/S electrolytes, as **preventing the fast electrode passivation** and extending the length of the second discharge plateau."

Ji et al: "Deposition of insoluble sulphur species on the surface of the Li electrode and formation of irreversible Li_2S on the [PEG-modified] cathode surface are strongly inhibited"

Local electrolyte additive effect of PEO

Lacey et al, Chem. Commun. 49, 8531 (2013)

Motivated by reports of PEO/PEGbased cathode "barriers" or "polysulfide traps"

Unification of several literature studies

Common beneficial effect of polyethers – as a binder, a cathode coating, or electrolyte additive

Higher capacity (sulfur utilisation) and reduced hysteresis

PEO as a binder: best performance

Reduced overpotential at charge/ discharge limits

→ Reduced passivation of electrode surface (e.g., effect of Li⁺ softening)?

Lower impedance with PEO binder

However: PEO is actually not a very good binder... difficult to coat from water, poor adhesion

Amides/lactams

strong interactions with PS! Can it be a real barrier?

UNIVERSITE

Our observation – dark red, insoluble, stable complex formed between Li_2S_6 and PVP

Increased stability of Li₂S-based cathodes with PVP binder – less PS in electrolyte, therefore less active mass loss to the anode Is the effect retained with S-based cathodes? Can we pair it with PEO for increased capacity and stability?

Lacey et al, J. Power Sources 264, 8–14 (2014) PEO:PVP

a functional, co-operative binder system

UNIVERSITET

1000 mAh g⁻¹ after 50 cycles Optimal 4:1 mixture outperforms individual components PEO increases capacity, PVP stabilises PVP reduces slurry viscosity enabling water-based cathode preparation

PVP – high impedance on its own, kept low in combination with PEO

To answer a question from earlier: self-discharge reduced, rate capability preserved

UNIVERSITET

Very promising results with optimised PVP-based binders

1100 mAh g⁻¹, 59% S in cathode, commercial materials only!

PVP-based binder mixtures

High capacity @ high S loading, water solubility, compatible with high S.A. carbons

No exotic materials or techniques

Optimised binder in this case matched to optimised carbon with slightly higher S.A. and pore volume

Very promising results with optimised PVP-based binders

Filled points – cycle begins after a wait at OCV – number of days indicated by number Rate of self-discharge clearly slowed by PVP binder

With optimised carbon/binder – double capacity after 3 months!

Besides the very high energy density...

...perhaps the next best advantage of Li-S is that it is potentially cheap

So it is surely important that strategies to tackle the drawbacks are cheap and scalable

Sulfur stacks from oil sands in Fort McMurray, AB, Canada Photo credit: globalforestwatch.ca

Conclusions

- The binder can be considered as a functional, local electrolyte additive
- Polyethers can be used to increase capacity, PVP can be used to stabilise capacity
 - Can investigate cooperative and water-soluble binder combinations based on this concept
- Certain binder/solvent combinations can be detrimental to performance – PVdF/NMP is a notable example
- Self-discharge is still a considerable problem with this system which deserves more attention

Thank you!

Kind acknowledgements:

- Martin Oschatz, TU Dresden
- Dr Martin Cadek, Orion
 Engineered Carbons GmbH
- Era Net Transport project "MaLiSu"
- Vinnova, Sweden

For further information:

The effect of PEO: Lacey et al, Chem Commun. 49, 8531 (2013)

PEO:PVP binder: Lacey et al, J. Power Sources 264C, 8 (2014)

Porosity blocking: Lacey et al, J. Phys. Chem. C, DOI: 10.1021/jp508137m

Correspondence to: matthew.lacey@kemi.uu.se