The Li-S battery: an investigation of redox shuttle and self-discharge behaviour with LiNO₃-containing electrolytes

Matthew J. Lacey^a, Anurag Yalamanchili^{a,b}, Julia Maibach^a, Carl Tengstedt^a, Kristina Edström^a, Daniel Brandell^a

^a Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538,

Lägerhyddsvägen 1, SE-751 21 Uppsala, Sweden

^b Scania CV AB, SE-151 87 Södertälje, Sweden

Supporting Information

Figure S1: reference XPS spectra for Na₂SO₃, NaS₂O₃, Li₂SO₄ and Li₂S alongside the XPS spectra for the anode samples as measured in Fig. 3.

Figure S2: Additional plot for analysis of the "cycle/wait" test (Section 3.4, Fig. 5). a) Voltage profiles for the relaxation periods during cycles 1-16 only. b) Reproduction of Fig 5b) from the manuscript for comparison purposes. This plot further supports the conclusion that self-discharge slows dramatically as the cell reaches the lower voltage plateau at 2.15 V.

Figure S3: Estimation of the polysulfide shuttle constant as defined by Mikhaylik and Akridge (i.e., the negative of the gradient of the linear fit with units h⁻¹).

Figure S4: current transients during OCV relaxations of the cell made every 10 cycles.